○武智 祐誠、河田 皐、黒河 寛之、岡本 隆 愛媛県立中央病院放射線部

【背景】

肺腫瘍の手術には胸腔鏡を用いた切除術 (videoassisted thoracic surgery:VATS) が行われている。術 前 に 肺 動 脈 (pulmonary artery:PA),肺 静 脈 (pulmonary vein:PV)の分岐・走行を把握することで 迅速かつ安全に手術を行う上で重要となる。そのた め に three-dimensional computed tomographyangiography(3D-CTA)を撮影している.呼吸停止不良 の不確実から起こる位置ズレや被ばく線量を考慮し, 当院では希釈Test Injection法(TI法)を用いた1相撮 影を行なってきたが手技が煩雑であった.希釈TI法の 結果を用いて希釈Test Bolus Tracking法(TBT法)を 考案した.

【目的】

考案した希釈TBT法の有用性について評価を行う. 【方法】

本研究のプロトコルおよび臨床画像の使用につい ては当院の倫理委員会にて承認された.2020年11月 ~2023年11月の間に希釈TI法または希釈TBT法で 肺動静脈3D-CTA撮影を行った108症例(希釈TI法: 51症例,希釈TBT法:57症例)を対象にした.(Table1) **希釈TI法**

造影剤注入には,造影剤自動注入器(Dual shot GX7,根本杏林堂)を用い,原則として造影剤の注入 ルートは20 Gの留置針を留置し,370 mgl/kgを使用し 生理食塩水で後押しした.造影方法はtest injection 法を用いて,注入速度5.0 ml/s,注入量50 ml,造影剤と 生理食塩水を20%:80%の混和注入した.生理食塩水も 動速度にて5 秒注入した.test injectionから得られた Time Enhance Curveから造影剤希釈率,撮影時間,注 入時間を求めた.main bolusとして2段階注入を行い, 1段目に肺静脈、2段目に肺動脈が目標CT値になるよ うに調整し撮影を行った.撮影には64列 MDCT(SOMATOM Definition Edge, Flash, SIEMENS 社)を使用し,管電圧は120 kV,管電流はCare Dose 4D(CT-Auto exposure control)を使用した.収集検出 器は0.6mm×64 row,ガントリ回転速度は0.28 s/rot,ピ ッチは1.1-1.3,ヘリカル撮影で撮影範囲は全肺として 尾頭方向で撮影した.(Table2)

希釈TBT法

造影剤注入ルートは20 Gもしくは22 Gの留置針を 留置し,注入速度は26 mgI/kg/secとした.希釈TBT法 の造影剤プロトコルをFig.1 に示す.test bolusとして 造影剤と生理食塩水を20%:80%の混和注入で注入時 間を10秒,そのあと生理食塩水注入時間を5 秒,イン ターバル時間を15 秒,その後main bolusとして造影 剤注入時間を13 秒,造影剤と生理食塩水を (15/26mgl/kg/sec)%:{1-(15/26mgl/kg/sec)%の混和 注入で注入時間を13秒,生理食塩水注入時間を5 秒とした.Monitoring位置は左房(Left atrium:LA)と し,test bolusのピークをトリガーとして32秒後に撮影 を開始した.管電圧はA:100kV,B:Sn140kVのDual Energy撮影,管電流はCare Dose 4D(CT-Auto exposure control)を使用した.収集検出器は0.6mm× 64row,ガントリ回転速度は0.28s/rot,ピッチは0.9-1.1, ヘリカル撮影で撮影範囲は全肺として尾頭方向で撮 影した.

Table1Comparison of patient characteristics
between diluted test injection method and
diluted test bolus tracking method

	希釈TI法	希釈TBT法	ho value	
Sex,no.of patients	51	57		
(Male, Female)	(33,18)	(31,25)		
	68.10	69.58	007	
Age(years)	(30-84)	(41–87)	.001	
	162.15	159.26	100	
Height(cm)	(141.4–179.6)	(143.2–184.5)	.103	
	59.30	59.31	700	
Weight(kg)	(37–86)	(42–85)	.786	
Body surface area(cm ²)	1.62	1.61	500	
	(1.25-2.02)	(1.3-2.05)	.703	
Pada mana indan(lag (m ²)	22.49	23.28	177	
Body mass index(kg/m^2)	(15.91-31.56)	(17.74–31.53)	.177	

検討項目

希釈TI法と希釈TBT法で撮影したPAとPV,上行大動 脈(Ascending aorta:A-Ao),下行大動脈(Descending aorta:D-Ao)のCT値を計測した.PAの測定位置は主 肺動脈(main PA:MPA),左右の上葉枝(upper lobe PA:UPA)と下葉枝(lower lobe PA:LPA),PVの測定位 置はLA,左右の上葉枝(upper lobe PV:UPA)と下葉枝 (lower lobe PV:LPV)とした.またA-Ao,D-Aoの測定位 置は右冠動脈起始部とした.測定血管のregion of interest(ROI)の大きさはMPAとLAとA-Ao,D-Aoは 100~110 mm²,UPAとLPA,UPVとLPVは5~6 mm²とし て計測を行った.(Fig. 2)

造影効果はPA,PVの各測定位置での平均値,また分 離表示の評価はPAとPVのCT値差(PA-PV: ΔCT 値)で行い,比較した.CT値均一性はPA,PVの各測定 位置でのCT値のバラツキをstandard deviation:SDで 評価し,比較した.

統計解析にはRを用いてMann-WhitneyU検定を行い,有意水準を5%とした.

 Table 2
 Scan parameters of diluted test injection method and diluted test bolus tracking method

	希釈TI法	希釈TBT法
Tube voltage[kV]	120	A:100 B:Sn140
		(DE Comp:0.6)
Tube current[mAs]	Care Dose 4D(CT-AEC)	
	160	A:250 B:213
Detector collimation	0.6mm×64rows	
Rotation Time[sec/rot]	0.28	
Pitch Factor	1.1-1.3	0.9-1.1
Scan direction	Caudo-cranial	

CM1+SS	SS	IR	CM	CM2+SS	SS
10s	5s	15s	13s	5s	5s
\leftarrow			←	\longrightarrow	

Test bolus

Main bolus

Fig. 1 Injection procedure of diluted test bolus tracking method CM: contrast material, SS: saline solution, CM1+SS: 20%: 80% saline-to-contrast -medium mixture, CM2+SS: (15/26mgI/kg/sec)%: {1-(15/26mgI/kg/sec)}% saline-to-contrast medium mixture, JR: Interruption

Fig. 2 Measurement position of pulmonary artery, vein, and thoracic aorta.(a) region of interest setting for pulmonary artery, (b) region of interest setting for pulmonary vein ,(c) Thoracic aorta

【結果】

各測定結果をFig. 3に示す.造影効果の比較を Fig. 4.△CT値の比較をFig. 5に示す.PAのCT値は 希 釈 TI 法:233.4±27.8 Hounsfield unit (HU), 希釈TBT法: 220.6±51.3 HUであり希釈TI法が高く なった(p<0.05).PVのCT値は希釈TI法: 355.2±30.5 HU,希釈TBT法: 379.8±49.8 HUであり希釈TBT法 が高くなった(p<0.05). A-AoのCT値は希釈TI法: 375.3±28.2 HU, 希釈TBT法: 388.63±43.7 HUであ り希釈TBT法が高くなった(p<0.05).D-AoのCT値は 希釈TI: 356.3±28.9 HU,希釈TBT法: 380.7±43.2 HUであり希釈TBT法が高くなった(p<0.05).△CT値は 希 釈 TI 法: 114.3±21.3 HU, 希 釈 TBT 法: 159.2±53.2 HUであり希釈TBT法が大きくなった (p<0.05) (Table 3).CT値均一性の比較をFig. 6に示 す.PAの均一性は希釈TI法: 18.7±9.1 HU, 希釈 TBT法: 19.7±8.0 HUであり、PVの均一性は希釈TI 法: 17.9±7.9 HU, 希釈TBT法: 20.0±6.7 HUとなり, PAとPVの均一性に有意差は認められなかった

【考察】

肺動静脈の分離表示にはCT値差が200 HU以上あ れば極めて良好で,200 HU以下であっても100 HU 以上のCT値差があれば概ね良好な分離表示が作 成可能であるという報告があり,CT 値差100 HU以上 を基準とすると,希釈TBT法では100 HU以下が8/57 症例であった.左房でMonitoringを行うため,心周期 や呼吸によりTime Enhance Curveが安定せず,正確 なピークが捉えることができなかったと考える.

本研究のリミテーションとして、希釈TI法と希釈TBT法 における造影剤の注入時間や注入速度、撮影管電 圧が異なるため、PAやPVのCT値に大きく影響してし まう.しかし、本研究は肺動静脈の分離を目的として おり、PAとPVの個々のCT値よりもΔCT値が重要であ るため、造影剤の注入時間や注入速度、撮影管電 圧の違いが大きな問題にならないと考える.二つ目と して、肺循環が極端に異なる場合やTest Injectionの タイミング不良などにより上大静脈(superior vena cava)に残存する造影剤によるアーチファクトが血管 描出の影響については評価をしていない.

【参考文献】

北野哲哉, 金子雅一, 山田茂樹. 肺がん胸腔鏡補 助下手術前の肺動静脈分離 3D-CTA における多 段階注入による 1 相撮影法の有用性.日放技学誌 2019; 75(10): 1165-1172.

田中俊樹, 郷良秀典, 古川昭一, 他.肺癌手術にお

ける肺 動静脈 3D-CTangiography の有用性.日呼 外会誌 2005; 19 (1): 8-11.

鈴木 潤, 大泉弘幸, 加藤博久, 他.肺区域切除にお ける 術前 CT アンギオグラフィー. 日呼外会誌 2012; 26(6): 586-590.

Yamashita H. Variation in the pulmonary segments and the bronchovascular trees. Roentgenologic Anatomy of the Lung Tokyo, New York: Igaku-Shoin; 1978: 46-58.

Akiba T, Marushima H, Harada J, et al. Importance of preoperative imaging with 64-row three-dimensional multide- tector computed tomography for safer video-assisted thoracic surgery in lung cancer. Surg Today 2009; 39(10): 844-847.

Fukuhara K, Akashi A, Nakane S, et al. Preoperative assessment of the pulmonary artery by threedimensional computed tomography before videoassisted thoracic surgery lobectomy. Eur J Cardiothorac Surg 2008; 34(4): 875–877.

Oizumi H, Endoh M, Takeda S, et al. Anatomical lung segmentectomy simulated by computed tomographic angiogra- phy. Ann Thorac Surg 2010; 90(4): 1382-1383.

大泉弘幸, 遠藤 誠, 太田 寛, 他.Multidetector row CT シミュレーションによる肺切除術.日呼外会誌 2009; 23

(7): 912-917.

Shimizu K, Nakano T, Kamiyoshihara M, et al. Segmentectomy

guided by three-dimensional computed tomography angiogra- phy and bronchography. Interact Cardiovasc Thorac Surg 2012; 15(2): 194-196.

Watanabe S, Arai K, Watanabe T, et al. Use of threedimensional computed tomographic angiography of pulmonary vessels for lung resections. Ann Thorac Surg 2003; 75(2): 388– 392; discussion 392.

Yamada S, Suga A, Inoue Y, et al. Use of multidetector row angiography for the arrangement of video-assisted modified segmental resection. Eur J Cardiothorac Surg 2009; 36(4): 727-730.

山口隆義,高橋大地.新しい造影方法である test bolus tracking 法の開発と,冠状動脈 CT 造影検査 における有用 性について.日放技学誌 2009; 65(8): 1032-1040.

Fig. 3 Comparison of CT value between diluted test injection method and diluted test bolus tracking method

Fig.4 Comparison of CT value of PA-PV between diluted test injection method and diluted test bolus tracking method

Fig.5 Comparison of uniformity of CT value between diluted test injection method and diluted test bolus tracking method

	希釈TI法	希釈TBT法	ho value	
CT Value(HU)				
PA	233.4±27.8	220.6±51.3	< 0.05	
PV	355.2 <u>+</u> 30.5	379.8±49.8	< 0.05	
PV-PA	114.3±21.3	159.2 <u>+</u> 53.2	< 0.05	
A—Ao	375.3±28.2	388.6±43.7	< 0.05	
D-Ao	356.3±28.9	380.7±43.2	< 0.05	
Uniformity(HU)				
PA	18.7 <u>+</u> 9.1	19.7 <u>+</u> 8.0	n.s.	
PV	17.9 <u>+</u> 7.9	20.0 <u>+</u> 6.7	n.s.	

Table 3Comparison of CT value and uniformity between diluted test injection method and diluted
test bolus tracking method